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Computing Volumes of Polyhedra 

By Eugene L. Allgower and Phillip H. Schmidt 

Abstract. In this note we give two simple methods for calculating the volume of any closed 
bounded polyhedron in R' having an orientable boundary which is triangulated into a set of 
(n - 1)-dimensional simplices. The formulas given require only coordinates of the vertices of 
the polyhedron. 

1. Introduction. The purpose of this note is to give two simple methods for 
calculating the volume of any closed bounded polyhedron P in R' having an 
orientable boundary aP which is triangulated into a set T of (n - 1)-dimensional 
simplices. Following Hadwiger [2], we define a polyhedron to be the union of 
pairwise disjoint convex polyhedra, each of which is the convex hull of a finite 
number of points. 

In [1] we have described an algorithm for obtaining a piecewise linear manifold 
which closely approximates an implicitly defined manifold. If P has been given in 
such a way, then the affine pieces of aP are in general easy to triangulate with an 
inherited orientation. For polyhedra P which are determined by a given system of 
inequalities, methods and programs for triangulating P have been given in [5], [6]. 
For such polyhedra, a triangulation of the boundary is not easily available, so our 
method is inappropriate. Of course, our approach would also be unnecessary for 
computing the volume of a parallelotope. 

Practical applications of the methods given here may be made to the approxima- 
tion of an area bounded by an implicitly defined curve or to approximation of the 
volume of a solid which is bounded by an implicitly defined surface. 

Although some formulas for the volume of convex polyhedra in Rn appear in the 
literature (e.g., [3]), these formulas generally require the computation of the (n - 1)- 

volume of the facets and additionally they involve extra computations of certain 
distances. The volume formulas we give here involve only the coordinates of the 
vertices of P. 

2. Volume Formulas. Let us assume that the boundary aP is triangulated into 
(n - I)-simplices a e T which are positively oriented relative to the outward 
normals to the facets in aP. For our purpose it is only necessary that the simplices 
are so oriented as to form a boundary chain (see [7]). 
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Our first formula for the n-volume V"(P) of the polyhedron P derives from the 
classical formula for the volume of an n-simplex, 

1 
(2.1) Vn(P)= - - det(vl(a) ... vn(a)) 

aT 
n 

Here the vi(a) are the vertices of the (n - 1)-simplex a ordered according to the 
orientation of a. 

Each term in the sum in (2.1) represents the signed volume of an n-simplex T(a) 

(possibly degenerate) having one vertex at the origin and the remaining vertices 
being those of a. The orientation of a gives the same sign to the volume as that of 
the inner product of b(a), the position vector from the origin to the barycenter of a, 
and n (a), the outward normal to a. 

Formula (2.1) is a special case of formula (17) on page 42 of Hadwiger [2],but we 
include its derivation for completeness. Let 

E+= {a E Tlb(a)Tn(a) > 0} and E_= {a E Tib(a)Tn(a) < 0}. 

Then P = closure{U, it T(a)/Ua E _ (a)) and hence,due to the sign properties 
of the classes 2 +, l 

Vn(P) = E Vn((a)) + E Vn(T(1)) 
a e Y:+ a E= _ 

and (2.1) follows. 
Our second formula for Vn(P) is a generalization of the trapezoidal rule for 

calculating the area of a polygon. We form the sum of the signed volumes of 
n-dimensional prisms p (a) each of which is bounded "above" by an (n - 1)-simplex 
a belonging to T, "below" by a coordinate plane, and laterally by the planes which 
are orthogonal to this coordinate plane and contain an (n - 2)-face of a. The 
resulting formula is 

(2.2) J'()(i)' i det_ 

whereVn(P) 
= 

(' 
1) E 

the (ni)! 
det In 

where the vi's are the ordered vertices of a as discussed above. Here Vn is the n th 
coordinate of vi and vb is the projection of v, into Rn-1 obtained by deleting the nth 
coordinate from vi. 

Each term in (2.2) corresponds to the signed volume of a prism p (a), which is 
easily seen to be the product of its average height multiplied by the signed 
(n - 1)-volume of its base. The orientation gives the same sign to this term as that of 
the inner product between n(a) and the unit vector orthogonal to the plane Xn 0 

in the direction of b(a). 
The formula (2.2) can be verified in the same manner as (2.1), but with 

A+= {a E TI(b(a)Ten)(n(a) en) > 0) and 

_= {a E Tl(b(a)Ten)(n(a) Ten) < 0, 

where en is the nth standard unit vector. 
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3. Computational Considerations. Before we discuss computational considerations 
related to Formulas (2.1) and (2.2) we interpret these formulas in the two-dimen- 
sional case where the area of a polygon is calculated. Suppose that the boundary of 
the polygon is the piecewise linear path formed by traversing the points {(xi, yi)}im=1 
in order. 

Formula (2.1) is illustrated by Figure (i). The formula becomes 

(3.1) 2 ) 
ai=1 

2 
?C 1 | 

i2=1( 
il ili) 

I~ ~ ~ ~~~~~~hr (e xm x+ 1 = (Il 

where~yni ~) 

Formula (2.2) is illustrated by Figure (ii); here the formula is 

(3.2) V2(P) = (-1) E( 2 )det( xi xj+) 

-E~j (Yi2?Yi) (X- xX+1). 
i=1 

Notice that Formula (3.2) requires only one multiplication per term while (3.1) 
requires two. It is generally true that the determinant in Formula (2.2) is equivalent 
to one of order (n - 1) while that in (2.1) is of order n. Thus, (2.2) is computa- 
tionally more efficient than (2.1). 

The calculations of the determinants involved in these formulas present no 
difficulty if n is 2. If n is large, then an efficient method for computing them is 
desirable. Such a method is possible if the simplices of T can be traversed so that 
successive (n - 1)-simplices share an (n - 2)-face. This is exactly the scheme in [1] 
and this volume calculation procedure could be easily added to the algorithm 
described there. 

In case the polyhedron is described as in [1], the successive determinants differ in 
sign and in the entries of the column corresponding to the vertices of the (n - 1)- 

simplices which are opposite the common (n - 2)-face of these simplices. Thus only 
a rank-one change is made between the two matrices whose determinants are 
successively computed. If an LU factorization of this matrix is stored, then these 
rank-one updates may be efficiently and stably carried out by the method of 
Fletcher and Matthews [4]. Furthermore, the determinants in (2.2) are easy to 
compute from these factors. 

(X 1, Y 1) ~~~~~~(x1,y0) 

, Y2 (X(X2,y2) (2mYm) 

(i) (ii) 

FIGURE 3.1 
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An estimate of the number of operations needed to calculate the volume is 
possible if one knows M, the number of (n - I)-simplices in the triangulation of the 
boundary. Each full LU factorization takes I n3 operations while the updates each 
take approximately 2.6n2 operations [4]. If the entire boundary can be traversed by 
moving between (n - I)-simplices which share a common (n - 2)-face, then the 
number of operations needed to compute the volume would be approximately 
2.6Mn 2. Even if occasional full factorizations were needed because of the inability to 
move to an adjacent (n - 1)-simplex, the preceding estimate should serve, since in 
general M >> n. 

4. Concluding Remarks. Formulas (2.1)-(2.2) are not restricted to simply con- 
nected polyhedra. If 8P consists of separated components, one merely needs to 
account in T for the oriented triangulations of all components of aP, where of 
course the orientations of the components must be mutually consistent. This will be 
the case if P itself is triangulated into consistently oriented n-simplices and the 
triangulation of 8P inherits this orientation. 

These formulas can be modified for the purpose of computing the centroid of P or 
for other geometric computations. 
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